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Motivation

‘ Theoretical Biology and M edicine
Representation of oculomotor system
Eye movement pattern and neur opathology

‘ Application of Optical Control Model to Robot

Human-like eye movement




Binocular motor system based
on anatomy and physiology

Control of binocular movements
by reciprocal control paths

Adaptation mechanism

Synthesized binocular
motor system

¢ Vestibular oculomotor reflex (VOR)

* pursuit eye movement
¢ Conjugate eye movement

® Vergence eye movement




Exe movement

Unification of

1 Saccade :

| Conjugate
2 Pursuit +
3 Optkinetic reflex Ver gence

4 Vestibloocular reflex

Ocular motor model of single eyel

1. Principle of cooper ative control based
on vestibular & optical signals

2. Dynamic char acteristics and
frequency response of the model

3. Adaptive systems
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Principle of cooperative control

Control by vestibular signal

Control by retinal signals
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Transfer function of ocular muscles and eyeball




Basic neural pathsfor horizontal eye movements
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Rotational drum

Rotational stand

Simulated experimental method
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Characteristics of normal eye movement
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Turning floor in darkness
Characteristics of the model in VOR ( vestibular nystagmus)
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Frequency response of VOR mode
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Frequency response of the optokinetic r eflex model
(g=1,a=0,1 =0)
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f Adaptive characteristics \
of ocular motor system I \

Adaptation mechanism

Role of neural pathsinto flocculus
from stretch receptors
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Flocculus

signal
Neural pathsfor horizontal eye movements
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Block diagram of eye movements control system

for asingle eye
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Saccades
signal )
Neural pathsfor horizontal eye movements
based on anatomical structure

Output from Purkinje’'s cells
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Block diagram of eye movements control system
for asingle eye




\\\\ . before cutting input signal E(t)
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Learning times

ANN learning errorsbefore and after cutting off
the stretch receptor signal E(t)

1. Eye movement dependson
smooth pursuit (low frequency)
optkinetic reflex(high frequency)
VOR (high frequency )

2. Learning systems
short term(vestibular nucleus)
long ter m(cer ebellum)

3. Necessity of stretch receptor signal
for the appropriate learning




Binocular motor control system I

Thebasic model of binocular
movement and itsanalysis

|ts application to binocular axes
control system

Binocular motor system

The basic model of binocular
movement and its analysis




(Center line of eyes)

Base coordinates

Therelationship between target , head, eyeballs and vestibular organs

Neural pathways of horizontal binocular motor control system
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Mathematical model of eye movement for a bin&)cular
motor system based on the physiological model
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Simplified model




Vergence VOR
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1. Different transfer function between
ver gence and conjugate Eye movements.

2. Only a single object can be seen by both eyes.

3. Elimination of centrifugal force by reciprocal
neural paths.

4. Principle of straightforward VOR was clarified.




%pplication toindustrial systeml

Application of biological binocular
motor system to eye robot

/4

Binocular axes
control device
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Counter & D/A board

Eye robot based on binocular axes control system
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Block diagram of the binocular axes control system

Binocular eye robot control system
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Response of the binocular eye robot control system
(1) fixed target and rotating head,
(2) fixed head and rotating tar get,
(3) rotating head in a dark environment
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Response of the binocular eye robot control system
(4) fixed target and moving head in y-direction,
(5) moving head in y-direction in a dark environment.
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Response of the binocular eye robot control system
(6) fixed head and moving target in x-direction,
(7) fixed target and moving head in x-direction,
(8) moving head in x-direction in a dark environment.

1. Different eye movement from
conventional industrial eye

2. Adaptive control systems coping with
some defects

3. Accur ate measur ement of distance




Futureview |

1. Diagnosis of eye movement

2. Pathology and Adaptation
physiological functions caused
by some defects and injuries

3. Virtual reality
Accurate measurement of position
from target




