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A uni"ed adaptive oculomotor control model*

Xiaolin Zhang� and Hidetoshi Wakamatsu

School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113, Japan

SUMMARY

In order to understand mechanisms of oculomotor control systems, an oculomotor model based on eye's
anatomical structure and physiological mechanism is developed. In this model, various types of eye
movements are considered, and two learning systems, one based on adaptive characteristics of #occulus and
the other on vestibular nuclei's are developed. The role of neural paths from ocular muscle stretch receptors
into #occulus, which were thought to not contribute in eye movement, is discussed in detail from the
viewpoint of system control engineering. The experimental results through simulation show good control
performance of the proposed model. Copyright � 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

When catching a moving object on the central pit of the retina, the oculomotor control system
performs di!erent kinds of eye movements according to position and movements of target and
head. To understand the anatomic structure and the physiological mechanism of eye, a math-
ematical model for the oculomotor control system is needed.

Until now, most eye movement models simulated only one type of movement [1}3]. However,
most eye movements are composed of several types, which co-ordinate with each other. Further,
some eye movements, such as smooth pursuit and optokinetic re#ex, though with di!erent input
signals from the retina, are controlled by the same neural loop, and are always generated together
and cannot be divided from the viewpoint of physiological mechanism. Thus, in order to analyse
characteristics of uni"ed eye movements, a model including control loops of smooth pursuit,
optokinetic re#ex, and VOR (vestibuloocular re#ex) are built.

It is known that eye shows adaptability to variation of environment and physiological changes
[2}14]. Recently, it has become clear that this adaptability is shown not only in the #occulus but
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Figure 1. Outline of neural paths for eye movements.

also in the brain stem [5}9]. However, how the two adaptive systems, referred below as
learning systems, are related to each other, and the merits of the two learning systems
working together had not been discussed. This paper analyses the characteristics and relation-
ships of the two learning systems using learning models from the viewpoint of system control
engineering.

2. OCULOMOTOR CONTROL SYSTEM MODEL

Eye movements are classi"ed in saccade, smooth pursuit, optokinetic re#ex, VOR, and vergence.
In order to make the discussion easy, only horizontal movement for a single eye here is
considered. Thus, vergence is not considered. Here saccade also is not considered, which has an
independent eye movement control system, however, saccadic signal is taken into account as
a reset signal when the optic axis angle is larger than the limited angle of eyeball.

2.1. Neuron paths of oculomotor system

Oculomotor neural paths are given by Figure 1 based on the previous studies [1}3, 11}15].
Figure 1 is regarded as a control system, eyeball and ocular muscles are the controlled objects,
and angle E of the horizontal optic axis is the output of the system. The control loop of the head
horizontal rotational signal detected by the horizontal canal (HC) is via vestibular nucleus
(VN)Poculomotor nucleus (OMN)Pmedial rectus muscles (MR) or VNPabducent nucleus
(AN)Plateral rectus muscles (LR). The control loop of the retina signal is from retina
(R)Ppretectum (PT)Pnucleus reticularis tegmenti pontis (NRTP)PVNPOMNPMR or
VNPANPLR. Saccadic signals come from colliculus superior and input to VN.

The structure of #occulus will be described in Section 5. Here only the input and output signals
of #occulus related to horizontal eye movements are introduced. The input signals are transferred
through mossy "bers (mf ). The signals coming from HC are head horizontal rotational signals,
and the ones coming from NRTP are retinal slip signals and retinal slip velocity signals. The mfs
from stretch receptors of eye muscles (LR, MR) are considered as paths to transfer the signals of
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Figure 2. Eye movement control system for a single eye.

eye rotational angle. The output of #occulus come from Purkinje's Cells (P) through axons, and
input to VN.

The above control loops constitute a basic control system of eye movement, with #occulus as
the learning system [4}16]. The learning error, which is used to improve the parameters of
a learning system (referred below as teaching signal), is the retinal slip signal, which comes from
the retina through IO (inferior olive nucleus) and cf (climbing "bers).

As climbing "bres, which transfer of the teaching signals, have branches connected to VN, the
learning system of the brain stem is thought to be in the VN [12, 16]. Here, the synaptic
transmission from HC to VN is expressed as � (t). The synaptic transmissions from NRTP to VN
are expressed as � and �, where � is gain of retinal slip signal transmission paths and � is gain of
retinal slip velocity signal transmission paths. Since control e$ciency is not so sensitive to gains
of feedback as to the ones of feedforward, synaptic transmissions of visual feedback loops (�, �) are
regarded as constant. Therefore, the VN's learning system is expressed as a variable gain � (t) of
feedforward path changed by climbing "bres.

2.2. Mathematical model of oculomotor system

The block diagram of eye movement control system based on Section 2.1 is illustrated in Figure 2.
Considering only rotational movement of head and target,H

�
is head rotational angle,O

�
is target

rotational angle around the neck, O
�
is target rotational angle related to the head, H

�
is signal

from the semi-circular canals [1}3], O
�
is retinal slip velocity, � is retinal slip, and � is delay for

retinal slip detection. Optical axis angle E (t) always moves in the opposite direction of head
rotation, while the target is standstill. Therefore, H(t)"!H

�
(t) is used as input signal of the

model. The #occulus is considered as a learning system, and we use an arti"cial neural network
(ANN) to simulate it.

To simplify the discussion, the transfer function of the controlled object, namely, the total
transfer function of the medial rectus muscles, the lateral rectus muscles, and the eyeball is
considered as a "rst-order system, where ¹

�
is time constant of the controlled object, g is gain.

There is a neural integrator between the vestibular nucleus and the ocular motor nucleus or the
abducent nucleus, so the transfer function of the neural paths from VN to LR and MR is
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Figure 3. Concept of experiment.

�Physiological experiments have shown that the neural integrator has a loss. This means that the neural integrator can be
expressed by ¹

�
/(s¹

�
#1). When ¹

�
PR the imperfect integrator becomes a perfect integrator 1/s.

expressed as the sum of an imperfect integrator� and a direct path, where ¹
�
is time constant of

the integrator, and g
�
is gain of the direct path [1]. The symbols � (t), � and � represent synaptic

transmission gains of neural "bres that transfer head velocity signal, retinal slip velocity signal,
and retinal slip signal. To simulate the learning mechanism of VN, � (t) is utilized by its learning
capability.

3. DYNAMIC CHARACTERISTICS OF THE MODEL

In order to validate the characteristics of the model with those of the physiological mechanism, an
experiment as illustrated in Figure 3 was performed using our proposed eye movement model,
and the simulation results were compared with the experimental ones of past research [1, 17, 18].
Figure 3 shows a subject sitting on the centre of a stand inside a drum. The drum and/or the stand
are rotated. In a short period of time, transmissions of paths through #occulus, which are changed
by the learning system, can be considered as constant. Similarly, �(t) can be thought as a constant
gain. In normal state [1], ¹

�
<g

�
. So, the following equation is obtained:

¹
�

s¹
�
#1

#g
�
"

¹
�
(sg

�
#1)

s¹
�
#1

(¹
�
<g

�
) (1)

When g
�
"¹

�
, the pole of the controlled object (s¹

�
#1) will be cancelled. This pole-zero

cancellation in eye movement control system has been con"rmed by physiological experiments
[1]. Here the gain of the controlled object is de"ned as g"1. Thus, Figure 2 is simpli"ed as
shown by Figure 4, where �, � and � are constant gains, considering transmissions of paths
through #occulus. �"1, �"0.5, �"0.01 are given based on physiological data [1, 11]. In
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Figure 4. A simpli"ed oculomotor control system without cerebellum.

Figure 4, the saccadic signal is produced by the retinal slip signal through inverse system of the
neural integrator for E (t) bigger than 203. The following equation is obtained from Figure 4:

E(s)"
¹

�
(¹

�
s#1) ��

¹
�
s�

¹
�
s#1

H(s)#(�s#�)e���� (s)� (2)

3.1. Unixcation of main types of eye movements

A uni"ed eye movement of VOR, optokinetic re#ex and smooth pursuit is produced by rotating
the stand under the condition that the subject can watch the stripes on the drum. Through
simulation, the stand rotated at 50 deg/s for 20 s, and stopped (the accelerations were 500 deg/s�
in the "rst 0.1 s and !500 deg/s� in the last 0.1 s). The drum was "xed. Thus, in Figure 4

O
�
(s)"0, � (s)"H(s)!E(s) (3)

Hence Equation (2) becomes

E(s)"
�¹

�
¹

�
s�#¹

�
(�s#�)(¹

�
s#1)e���

(¹
�
s#1)[(1#�e���)¹

�
s#�¹

�
e���#1]

H(s) (4)

In normal state, utilizing the parameters as [1] ¹
�
"15 s, ¹

�
"16 s, �"0.12 s, �

	
"0.2 s, the

trajectory of the optical axis can be simulated using Equation (4). Figure 5 shows the simulation
results. In Fig. 5(a) the smooth curve is smooth pursuit, and the abrupt curve is saccade.
Figure 5(b) shows the velocity of the eyeball. The broken line is the head rotational velocity signal
H

�
(t), which comes from the semicircular canals. The "gure shows that the pursuit velocity is

almost equal to the head rotational velocityHQ (t), which means that the uni"ed model has as good
a control performance as the normal physiological eye movement.

3.2. VOR eye movement

For the experiment in darkness, VOR is produced by rotating the stand. In this case, the eye
movement control system cannot get the retinal slip signal, and eye movement is controlled only
by the head movement signal that comes from the semicircular canals. The following equation is
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Figure 5. Characteristics of the model in normal state.

Figure 6. Characteristics of the model for VOR.

obtained from Equation (2):

E (s)"
�¹

�
¹

�
s�

(¹
�
s#1)(¹

�
s#1)

H(s) (5)

The stand was set to rotate at 50 deg/s. The output of the semi-circular canals is the head velocity,
which has a loss, and the neural integrators between the vestibular nucleus and the oculomotor
nucleus or the abducent nucleus also have a loss [1]. Thus, if head rotates at a constant velocity,
the eyeball velocity is near the head velocity at the "rst instant, and becomes zero slowly. Figure 6
shows trajectory of the optic axis calculated from Equation (5). This phenomenon appears in
physiological experiments [1].

3.3. Optokinetic eye movement

If the drum is rotated and the head is "xed, Equation (2) becomes

E (s)"
¹

�
(�s#�)e���

(¹
�
s#1)#¹

�
(�s#�)e���

O
�
(s) (6)
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Figure 7. Characteristics of optokinetic eye movement.

Figure 8. If set �"0 the optokinetic eye movement has only the fast component.

The output E (s) of the model is expressed in Figure 7 using Equation (6). Figure 7 shows that the
velocity of optokinetic nystagmus has 2 parts, a fast component and a slow component. Here the
feedback gain � is reset to a smaller value 0.002 in order to obtain a clear curve of the slow
component. This phenomenon appears in physiological experiments [17].

If the signal of the retinal slip is cut by setting �"0, the output of the model has only the fast
component (Figure 8), and if the signal of the retinal slip velocity is cut by setting �"0, the output
of the model is given as only the slow component (Figure 9) [11].

It is demonstrated through simulation, that the fast component of optokinetic nystagmus is
caused by the retinal slip velocity signal, and that the slow component is caused by the retinal slip
signal.

3.4. Side ewects of VOR

If the drum rotates at the same velocity as the stand, signals from the semi-circular canals prevent
the eye from gazing the target (a stripe drawn on the drum). In this case the eyeball need not
move, though signals are sent from the semicircular canals to the vestibular nucleus. Since

H(s)"!O
�
(s), � (s)"!E (s) (7)
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Figure 9. If set �"0 the optokinetic eye movement has only the slow component.

Figure 10. Characteristics of the model when target and head rotate at the same angular velocity.

the following equation is obtained from Equation (2):

E(s)"
�¹

�
¹

�
s�

(¹
�
s#1)�¹

�
s(1#�e���)#1#¹

�
�e����

H(s) (8)

The simulation result using Equation (8) is shown in Figure 10. It shows that when head and
the target rotate with acceleration, the eye is rotated by the semicircular canals signal (feedfor-
ward signal). If head and the target stop or rotate at constant velocity, the signal from
semicircular canals become 0, the eyeball is stopped by the retinal slip signal (feedback signal).
This phenomenon has also been con"rmed by physiological experiments [18].
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Figure 11. Frequency response of VOR model [11].

4. FREQUENCY RESPONSE OF THE MODEL

In the previous section, the performance of the oculomotor model presented was validated by
physiological phenomena. The structure of the model is recognized to be consistent with the
physiological mechanism.

To understand the relationship between VOR, optokinetic re#ex, and smooth pursuit, this
section analyses frequency responses of each eye movement type using the oculomotor model. As
in the previous section, the same model of Figure 4 is used with �"1, �"0.5, �"0.01. To
simplify the discussion, the retinal slip detection delay and the saccadic signal are not taken into
consideration.

4.1. Frequency response of VOR

If only VOR is considered, the following frequency transfer function is obtained from Equation
(5):

E ( j�)

H( j�)
"

���

(1/¹�
�
#��)(1/¹�

�
#��) ����!

1

¹
�
¹

�
�#�

1

¹
�

#

1

¹
�
� j�� (9)

Figure 11 illustrates the frequency response of Equation (9). It shows that VOR has small
response in low frequency domain and shows ideal response in high frequency domain. Gain
equal to 1 and phase shift equal to 03 mean that the eyeball rotates at the same velocity as the
head in opposite direction.

4.2. Frequency response of optokinetic reyex

If only the optokinetic re#ex is considered,H(s) and � are equal to 0 and the following equation is
obtained from Equation (2):

E (s)

O
�
(s)

"

¹
�
�s

¹
�
(1#�)s#1

(10)
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Figure 12. Frequency response of the optokinetic re#ex model (�"1, �"0, �"0).

The frequency transfer function is

E( j�)

O
�
( j�)

"

��
(1#�)���#1/¹�

�
�(1#�)�#

1

¹
�

j� (11)

The frequency response is obtained from Equation (11). Figure 12 shows that if gain � is large
enough, the frequency response of optokinetic re#ex will become similar to VORs. This phenom-
enon is demonstrated by physiological experiment, i.e. if the vestibulum is destroyed, the op-
tokinetic re#ex will compensate the VOR [3], since the learning system makes � bigger in this case.

4.3. Frequency response of smooth pursuit

The frequency response of smooth pursuit is obtained when the head is "xed, and gains � and � in
the model are set at zero. In this case the frequency transfer function is

E( j�)

O
�
( j�)

"

�
(�#1/¹

�
)�#��

(�#1/¹
�
!j�) (12)

The frequency response is obtained from Equation (12). Figure 13 shows that the frequency
response of smooth pursuit is just the opposite of VORs, i.e. the smooth pursuit only shows good
control performance in low-frequency domain.

In fact, physiological smooth pursuit includes control loop of optokinetic re#ex and VOR,
however, it appears only in low-frequency domain. It becomes clear to interpret smooth pursuit
as the retinal slip feedback control from the viewpoint of system control engineering, thus, from
now on, the retinal slip feedback control is called smooth pursuit control, and the retinal slip
velocity feedback control, as optokinetic re#ex control.

4.4 Frequency response of entire eye movement model

As described above, re#ex control loop (VOR and optokinetic re#ex) shows good performance in
high-frequency domain, and smooth pursuit control loop shows good performance in low
frequency domain. Thus, the model of eye movement as a whole can be thought as having
a &perfect' performance in all frequency domains.
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Figure 13. Frequency response of smooth pursuit (�"1).

Figure 14. Frequency response of the whole model (�"�"�"1).

Let be discussed below the frequency response of the entire eye movement control model. To
ease discussion, the target (drum) is "xed and the head (stand) is rotated. The following equation
is derived from Equation (4):

E (s)

H (s)
"

(�#�)¹
�
¹

�
s�#¹

�
(�¹

�
#�)s#�¹

�
(¹

�
s#1)[(1#�)¹

�
s#�¹

�
#1]

(13)

Hence, the frequency transfer function is

E ( j�)

H( j�)
"

!(�#�)¹
�
¹

�
��#[�¹

�
#�]¹

�
j�#�¹

�
(¹

�
j�#1)[(1#�)¹

�
j�#�¹

�
#1]

(14)

The frequency response obtained from Equation (14) is shown in Figure 14. It shows a &perfect'
control performance in all frequency domains. However, when the target moves, the control
performance gets bad, since the optokinetic re#ex control does not possess such a high e$ciency
in high-frequency domain as VOR.
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Figure 15. BNN of #occulus [16].

Figure 16. Neural network model of #occulus.

5. LEARNING SYSTEM OF EYE MOVEMENT MODEL

5.1. Artixcial neural network model

Flocculi of mammals mainly consist of Purkinje's cells (P), basket cells (B), stellate cells (St),
Golgi's cells (G), and granule cells (Gr). The fundamental structure is the same in all #occuli [16].
It can be simpli"ed as shown in Figure 15.

Climbing "bres (cf ) and mossy "bres (mf ) transfer their input signals to the #occulus. Purkinje's
cells' axons transfer the output signals produced by the #occulus to the VN or other nuclei. Each
Purkinje's cell is connected to one climbing "bre, and signals from the climbing "bres are
considered as processing errors, which are used to improve the synaptic transmission gains of the
neural network [16]. Mossy "bres connect to granule cells, and granule cells' axons climb up to
the cerebellar cortex and branch into a T shape, becoming parallel "bres. The parallel "bres
connect to Purkinje's cells, basket cells, stellate cells, and Golgi's cells to send excitatory signals.
Basket cells and stellate cells connect to Purkinje's cells and inhibit them. Golgi's cells connect to
granule cells and inhibit them. Figure 16 gives an arti"cial neural network (ANN) model based on
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Figure 17. Simpli"ed neural network model of Figure 16.

Figure 15, where S represents origin cells of mossy "bres, and the broken line on nodes St, B, and
G means that there are innumerous stellate cells, basket cells, and Golgi's cells.

Golgi's cells are thought as a device to regulate phase di!erence between signals coming from
mossy "bres and from climbing "bres [19]. The role of Golgi's cells can be considered as
a compensation for the detection delay of retinal slip � (t). Thus, if the Golgi's cells are assumed to
be eliminated with their function in the ANN retained, the retinal slip signal appears as � (t#�)
with a detection delay �. As stellate and basket cells have similar performance, they can be
adopted as negative gains from Gr cells to P cell. Thus, if the gain of path number j between Gr
cell and P cell is de"ned as w

��
, and !R(w

��
(R, Figure 17 is obtained from Figure 16. Since

the ANN in Figure 2 is a four-input one-output system, Figure 17 was de"ned as a four-input
one-output system, where � (k¹#�) represents retinal slip signal considering the detection delay
�, learning times k and learning cycle time ¹. As the controlled error at k¹ is detected at k¹#�,
in order to change w

�� ��
and w

���
within learning period ¹, ¹'� is required.

Figure 17 shows that the basic structure of #occulus is a two-layered neural network. So,
a two-layer ANN using back-propagation algorithm will be adopted in the adaptive eye
movement simulations to discuss the relationship between the #occulus learning and VN
learning. The conventional ANN learning model with back-propagation method is based on
learning by using its output signal error. With respect to biological neural network (BNN) of
#occuli, the processing error of controlled object (retinal slip signal) is used in learning.

5.2. The role of ocular muscle+s stretch receptors

The stretch receptors of ocular muscles have been thought not to contribute to eye movement.
However, neural paths from ocular muscles to #occulus have been known [15]. Here, the role of
stretch receptors is discussed in eye movement learning system from the viewpoint of control
engineering.

To control an object accurately, a learning control system needs to structure a type of inverse
system of the controlled object through learning. In order to characterize a controlled object, its
input and output need to be known. That is, the output values of the controlled object are
required for the synthesis of its inverse system in the case of learning system, as well as #occulus
learning system of eye movement. In Figure 2, the output of the controlled object (ocular muscles
and eyeball) is the angle of the optic axis. It is thought that the angle of the optic axis is detected
by stretch receptors of the ocular muscles, because the optic axis angle can not be detected by the
retina.
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Figure 18. Desired value given by the sum of positions of head and target.

5.3. Learning of vestibular nucleus

It is known that adaptive performance is not only governed by #occulus, but also by vestibular
nucleus [5}9]. Since neurons in vestibular nucleus do not have a complex network structure as
#occulus, VN can be considered as a simple learning system that does not have enough ability to
make an accurate learning like #occulus, but can learn quickly for its simple structure. This fact is
shown by physiological experiments [9].

It is known that ANN learning systems using back-propagation has a contradiction that if the
learning constant is small, the convergence speed slows down and easily falls to a local minimum,
however if it is set big, the "nal learning precision becomes bad. The eye movement control
system suggests that the whole learning performance is improved by the combination of an ANN
with slow and precise learning by setting learning constant small, and a simple learning system
with quick convergence. It can be thought that a simple learning system not only improves the
total learning speed, but also makes the main learning system avoid local minimums. Thus, the
following algorithm is used to simulate learning performance of vestibular nuclei.

� (k¹#¹ )"� (k¹)#	 (
!�(k¹))#�� (k¹#�)H
�
(k¹#�) (15)

where, 	 is forgetting constant, 
 is standard value of � (t), � is learning constant, k is learning
times, and ¹ is cycle time. Similar to the previous ANN, ¹'� should be satis"ed.

6. SIMULATION OF LEARNING MODEL

Here let the ANN's learning constant be equal to 0.001, number of units of the middle layer be
equal to 5, VN learning system's forgetting constant 	"0.001, standard gain 
"2.5, learning
coe$cient �"0.001 and � (0)"2.5. Similar to Section 3.1, time constants of the model in
Figure 2 are set as ¹

�
"15 s. ¹

�
"16 s, �"0.12 s, and ¹

�
"g

�
"0.01 s, and visual feedback

gains as �"0.5 and �"0.01. The model in Figure 2 is discretized with respect to a sampling time
¹

�
"0.005 s. In fact the learning cycle time of the ANN ¹ would have to be longer than �.

However, if we de"ne ¹'�, it will spend too long a time for learning in simulation. Unlike in an
organism, the retina slip � can be calculated within the sampling time ¹

�
in computer simulation,

so ¹ is de"ned equal to ¹
�
. Figure 18 shows the desired value of the eye movement model

of Figure 2 that is given by positions of the head and the target. The target rotates
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Figure 19. Learning errors ��
���

�� (k¹ ) for eye movement control system learning models.

Figure 20. Learning errors ��
���

�� (k¹ ) for eye movement control system learning models.

at 15 sin(2�t/5) deg/s. The head rotates at an acceleration of 80 deg/s� between t"0}0.625 s, at
a constant velocity between t"0.625}3.125 s, at an acceleration of !80 deg/s� between
t"3.125 and 3.750 s and stops to rotate between t"3.750}5 s.

Simulation 1: For discussion of the relationship between the two learning systems, three cases of
learning are simulated when the controlled object is set as g"0.6 and ¹

�
"0.025 s. In the

simulation, the parameter � (0) is set as 2.5, and the initial weights of the ANN are set according to
the learning in normal state (g"1 and ¹

�
"0.01 s). The "rst case uses only the ANN system for

learning. The second case considers only the VN learning system, and the third case uses the two
learning systems together. Figure 19 shows sum of squares of the learning errors. It shows, when
the ANN system and the VN system work together, both convergence speed and preciseness of
learning are better than only the ANN system working by itself. This simulation con"rmed that
although the VN learning system alone has no high learning ability, it helps the ANN system to
make the total learning performance better.

Figure 20 shows, in the beginning of the learning, that � (t) has a rapid increase and it gets back
to standard value slowly. This implies that VN plays a main role in the beginning of learning and
that ANN plays the leading role in the later period. These phenomena are called, short-and
long-term learning in eye movement physiology [9].

Simulation 2: To demonstrate the necessity of the optic axis angle signal in learning, learning
performances of the eye movement model are compared before and after cutting the ocular
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Figure 21. ANN learning errors ��
���

�� (k¹) before and after cutting of the stretch receptor signal E.

muscles stretch receptors loop. In the case of a controlled object set by g"0.6, ¹
�
"0.025 s,A

simulation result of the learning process is shown by Figure 21. The broken line shows learning
errors before cutting the feedback loop of the ANN input signal E (t), and the solid line shows
learning errors after cutting the loop. It shows that the learning performance after cutting the
ANN input signal E (t) is far worse than before cutting.B

7. CONCLUSION

In order to understand how eye movements relate to each other and to analyse the performance
of the adaptive mechanism of oculomotor control systems, a uni"ed oculomotor control
system model based on eye's anatomical structure and physiological mechanism was
proposed. The model was validated by comparing its dynamic characteristics with physiological
experiments.

Through the analysis of frequency response of eye movements, the relationship between each
eye movement type became clear. That is, in low-frequency domain, eye movement depends on
smooth pursuit control loop (the retinal slip signal feedback loop), and in high frequency domain,
it depends on VOR (semi-circular canals' signal feedforward loop) and optokinetic re#ex control
loop (retinal slip velocity signal feedback loop).

Through simulation of adaptive performance of eye movement, the necessity for the two
learning systems (the #occulus learning system and the vestibular nucleus learning system) were
shown in eye movement control for a single eye. That is, the performance of the two learning
systems working together was better than each learning system working by itself.

The role of ocular muscle stretch receptors, i.e. the necessity of optic axis angle signal in
#occulus learning when the target is in movement, was con"rmed by both system control theory
and simulation.

AIf g
�
"¹

�
;¹

�
is satis"ed, Equation (1) is stand, where the denominator (s¹

�
#1) of the controlled object can be

cancelled by the numerator (sg
�
#1). Thus, the eye movement becomes easy to control. Here (sg

�
#1) is interpreted as

a type of inverse system. The inverse system cannot be consistent so long as ¹
�
"0.025Og

�
remains, and the learning

system will have to produce an inverse system by learning.
BThe beginning of the simulations illustrated by Figure 21, in which the learning errors before cutting the E(t) are bigger
than after cutting, provides us the existence of bad in#uence of signal E(t) on the control system before its adaptation.
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