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SUMMARY

Mathematical simulation is utilized to visualize the
invisible phenomena, such as distribution of temperature
and/or stress in a concerning object, by using properly
structuralized nodes on each grid point of the orthogonal
coordinate system. Here, the close-packed nodes with same
effective radius are set on the vertex of regular tetrahe-
drons. Thus, the mathematical simulation calculating the
interactions among nodes can be appropriately performed
on the newly proposed coordinate system, which consists
of continuous connection of regular tetrahedrons with six
basic lattices. Then, the regular tetrahedron lattice coordi-
nate system is well confirmed for the description of defi-
nite nodes having interaction with their neighboring ones.
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1. Introduction

Simulations using numerical models that mathemati-
cally represent causal relations between various phenom-
ena based on results of scientific analysis [1, 2] can not
only reproduce objects’ dynamics but also predict possible
abstract events from currently observed data, or estimate
and visualize internal states imperceptible from outside,
thus providing a plenty of useful information including
uncertainties. In the field of medicine, effects of various
therapy methods and intracorporeal biological activities are
estimated without invasion into the body. Using these esti-
mated biological activities in verification tests of medical
equipment in terms of safety and effectiveness would make
possible planning of clinical trials and studies as well as

their shortening, thus contributing a great deal to the Life
Innovation policy.

As regards mathematical models employed in simu-
lations, compartment models [3] that focus on mathemati-
cal representation of input–output relations can be applied
even in case when functions of body tissues are unex-
plained. With this approach, tissue internal states are set
uniformly; therefore, when state distribution is assumed,
node models with nodes placed at representative points of
segmented tissues aremore adequate [4–6]. In suchmodels,
simulation results are affected by node placement, and a
number of purpose-specific placementmethodswere exam-
ined [7–11].

In finite element methods with nodes placed at ar-
bitrarily selected test points, distance between nodes, con-
nection number, and other parameters are not fixed, which
is advantageous in that parameters can be set according to
computer performance [4, 5].

On the other hand, if distance between nodes and
connection number are fixed, then changes of parameters
expressing physical characteristics become evident; thus,
methods to place nodes at equispaced lattice points were
also proposed [6–10]. As compared to compartmentmodels
and finite element methods, this may result in greater com-
putational complexity or inaccurate shape representation.
However, definite node positions are an advantage, while
finer segmentation and more accurate calculation have be-
come possible with the increase in computer performance.

By the way, when spheres of equal radius are closely
packed so as to simplify calculations, their centers make
up regular tetrahedrons. Maxwell showed that regular tetra-
hedron is a stable structure composed of the minimum
number of lattice points [11]; hence a wide adoption of
techniques in which regular tetrahedral structure is placed
as a basic structure on orthogonal coordinates, being widely
employed for spatial representationwhen developing calcu-
lation programs [6].

Lattice edges are arranged along cube face diagonals
(below referred to as ‘‘face diagonals’’) so that tetrahedral
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vertices coincide with lattice points in orthogonal
coordinates; however, with continuous arrangement, two
nonintersecting lattices run in parallel, and interaction
does not necessarily occurs even between closely spaced
nodes. A number of ways to solve this problem were
proposed, such as connecting regular tetrahedrons with
orthogonal coordinate grid, and tetrahedron arrangement
combining face diagonals and cube interior diagonals
(below referred to as ‘‘space diagonals’’) [6]. In so
doing, however, distances between nodes and effective
range shapes become complicated, thus obscuring
physical properties of nodes, and adding to computational
complexity. These issues are considered in detail in
Appendix.

On the other hand, methods were proposed to re-
produce human tissue shapes through continuous arrange-
ment of regular tetrahedrons, independently of orthogo-
nal coordinates [7, 8, 12]. In so doing, tetrahedron ver-
tices are connected to those of other tetrahedrons, thus
establishing pyramid-like connection relations; such re-
lations are stored to a database, but search for corre-
spondence relations may take time in case of a complex
shape.

From this viewpoint, when placing nodes in a tetrahe-
dral lattice, it would be appropriate to consider a coordinate
system with continuous arrangement of tetrahedrons, and
to present connection relations by certain rules that can
be handled in the same way as in orthogonal coordinates.
Nevertheless, there are no examples of connection relation
rules for arbitrary shape arrangement in such tetrahedral
coordinates. On the other hand, node allocation in lattice
coordinates created by continuous arrangement of regular
tetrahedrons was employed to propose dynamic models
based on a visco-elasto-plastic model [1, 2, 9] and visu-
alized models of temperature distribution in human head
using a thermodynamic model [10]. Particularly, results of
thermodynamic simulations using the latter model [13, 14]
showed good agreement with results of experimental mea-
surement, thus proving feasibility of accurate simulations
with biomathematical models. However, regularity of node
placement in such lattice coordinates was reported only
fractionally [15], while calculation method was not de-
scribed.

Considering the use of biomathematical simulations
to contribute to the Life Innovation policy, in this
paper we give a new definition of regular tetrahedral
lattice coordinate system to express connection relations
following certain rules. We clarify relations between
nodes in this coordinate system, and establish a common
algorithm of mathematical simulations with regard to
interactions among nodes. Thus we clarify calculation
procedures. In addition, we consider construction of object
shapes in virtual space, and assess utility of this coordinate
system through comparison with other coordinate
systems.

2. Mathematical Model-Based Analysis

2.1 Use of node models

Conventional mathematical models are described via
differential equations in space or time, and in many sim-
ulations, data observed at the current moment are used to
calculate change or state at the next moment [1, 2]. In so
doing, if results calculated one sampling before are taken
as observed data, and spatial or temporal difference is set as
small as possible, then nonlinear phenomena can be linearly
approximated, and state transitions in time series can be
continuously calculated. Due to linear approximation, time
required for one computation shortens, but computational
complexity grows as difference is set smaller. Thus, accept-
able convergence error is defined with regard to arithmetic
errors, and difference is set as small as possible in that
range.

By the way, mathematical models include compart-
ment models [3] that deal with real functional units when
segmentation is difficult, and node models [4–10] that con-
sider states in segmented areas so as to ensure following
certain rules.

With compartment models focused on input–output
relations, model parameters involve shape and size of areas
in which internal states are assumed uniform. These models
are especially useful when inputs and outputs can be fixed,
being employed successfully in the field of medicine and
pharmacology where input–output direction can be deter-
mined by blood flow.

On the other hand, node models, in which compart-
ments are further segmented, prove appropriate when the
model itself does not have any shape-dependent parame-
ters, or when input–output direction cannot be determined
uniquely. Nodal points represent mass, temperature, and
other material characteristics around them. Normally, con-
nection between nodes is expressed by links; however,
in some cases such as spring models [1, 2, 9] and heat
transfer models [10, 13, 14], connection elements should
express energy transfer, attenuation, and accumulation as
well. Thus in this study, we define channels to conceptually
represent connections and respective energy transfer. In
so doing, energy transfer, attenuation, and so on are only
considered between nodes directly connected by channels.
In other words, interactions occur only between two nodes
directly connected by a channel, and these relations are
represented by a mathematical model. Interactions between
nodes not connected directly by channels are not taken into
account; however, any arbitrary node is connected to multi-
ple nodes depending on the node allocation, and eventually,
interactions between all connected nodes are considered.
Thus, a node model uses a combination of mathematical
models representing actions of nodes and channels, respec-
tively.When distance between nodes is small, mathematical
models representing nodes and channels can be linearly
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approximated by difference in calculation, and nonlinear
properties can be expressed by functional units combining
nodes and channels.

2.2 Common difference equations used
in mathematical analysis

As explained above, in a node model, interactions be-
tween all nodes connected by channels are considered when
state change of every node at the next moment is calculated
from the current state using difference equations. State of
particular node N0 at moment t+1 one sampling ahead can
be calculated from its state variable at moment t, a bias
expressing state change caused by characteristics of that
node itself, and interactions with n directly connected nodes
Ni (i = 1 . . . n). This can be described by the following
general expression:

ξ0 (t + 1) = ξ0 (t) +
n∑
i=1

𝐤i0 (t)
{
ξi (t) − ξ0 (t)

}
+ 𝐁0 (t).

(1)

Here ξ is vector variable expressing node’s internal
state, and k is coefficient matrix that changes state based
on the difference of state variable. Besides, B is bias value.
Subscripts attached to the vector variables denote number
of nodes connected to the node N0 for which state change
is calculated; thus, ‘‘i0’’ indicates interaction that occurs
between nodes N0 and Ni.

Parameters expressing characteristics of each node
and channel are set separately, and nodes’ change states or
energy transfer between nodal points is calculated using a
unified method. When calculating changes in position, ori-
entation, and shape of objects constructed with viscoelasto-
plastic models [2, 9], state variables are coordinate and
velocity components of each node, while coefficient vec-
tors express elasticity, viscosity, and plasticity. When cal-
culating temperature distribution inside objects with heat
transfer models [10], state variables are node temperatures,
while coefficient vectors express heat transfer coefficients;
here bias can be interpreted as amount of internally gener-
ated heat.

3. Building of Regular Tetrahedral Lattice
Coordinate System

3.1 Base unit of node allocation

A node model represents states of each object’s
segment; therefore, nodes need to be allocated in space so
as to reproduce object’s shape. Assuming a uniform node’s
effective range and channel length, parameters of the

Fig. 1. Structural description of object with connections
of nodes. [Color figure can be viewed at

wileyonlinelibrary.com]

mathematical model are directly related to object’s proper-
ties. This offers an advantage of simpler discussion when
considering simulation results. The range represented by a
node can be defined as onewithin an effective radius around
the node; that is, spherical ranges are obtained. If effective
radius is set uniformly for all nodes, and the spheres contact
each other to interact via channels, then the spheres are
closely packed in space, and the nodes are arranged at the
vertices of regular tetrahedrons. This is a part of arrange-
ment known as close-packed hexagonal lattice (Fig. 1).

That is, when nodes are placed uniformly and closely
in space, nodes exist at the vertices of a basic structure
continuously configured of regular tetrahedrons.

3.2 Oblique coordinate system with
continuously arranged tetrahedrons

In order to consider energy transfer between nodes
or mass balance, connection relations between nodes must
be clear. Let us define ‘‘adjacency’’ as a state when two
particular nodes are connected directly by a channel and can
interact with each other; then in a continuous tetrahedral
arrangement, a node is adjacent to 12 other nodes as can
be seen from Fig. 1. A coordinate system with continu-
ously arranged regular tetrahedrons is established in order
tomanage numerous equispaced nodes and channels, and to
determine, without overlap, up to 12 nodes interacting with
a particular node. Every node and channel can be identified
in such coordinate system by assigning a number based on
the lattice coordinates.

When an arbitrary tetrahedron composed of adjacent
nodes is selected, a regular triangular lattice made of con-
tinuously arranged regular triangles is obtained on a plane
involving a face of the tetrahedron. This lattice represents
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Fig. 2. Definition of basic axes in oblique coordinate
system.

oblique coordinates configured of extended sides of regular
triangles and an infinite number of parallel lines. In case
of three-dimensional (3D) arrangement, three pairs of op-
posite sides of a regular tetrahedron are skewed relative to
each other; therefore, six coordinate axes are set up.

First, we set three basic axes, as in a conventional
coordinate system. Specifically, a vertex of regular tetrahe-
dron is defined as the origin, and three extended sides that
connect the origin with other vertices are defined as �x,
�y, and �z. Any two out of these three axes intersect at an
angle of 60° to make up respective planes. Another lattice
intersecting with every axis at the origin at equal angles
exists on plane �x –�y made up of axes �x and �y. All
nodes and channels are considered in mathematical simu-
lations; therefore, channels existing on this lattice must be
distinguished from those existing on parallel lattices. Thus
we define �xy axis as shown in Fig. 2. Besides, we also
define axes �yz and �zx on planes �y – �z and �z – �x.
As a result, planes not containing the three axes �x, �y,
and �z on the faces of regular tetrahedron are obtained in
parallel to the three axes �xy, �yz, and �zx.

By the way, when a uniform calculationmethod is ap-
plied continuously, as is the case with mathematical simu-
lations using node models, an efficient approach is to define
array variables in a computer program, and to refer to the
array variables by numbers assigned to every node. Oblique
coordinates of any lattice point can be set up using the basic
channel length and its integral multiples; therefore, oblique
coordinates are expressed by indices of array variables,
and characteristic values of respective nodes are recorded
in these variables. The indices of array variables can be
defined in 3D but such indices are normally specified using
integers of 0 or greater, which is suitable for handling nodes
existing in the first quadrant.

On the other hand, axes do not intersect in the oblique
coordinates as explained above, and as compared to orthog-
onal coordinates, the area classified as the first quadrant
amounts to 2/3 on a plane, and even less in 3D space, as

Fig. 3. Definition of six basic axes on oblique coordinate
system. [Color figure can be viewed at

wileyonlinelibrary.com]

shown in Fig. 3. Thus, when nodes are placed to reproduce
an object’s shape, the lattice coordinates must be translated
so as to provide usable area corresponding to the object’s
size. In other words, with this method, one has to think
about migration along the axes �x, �y, and �z depending
on the object’s shape, which requires providing sufficiently
large array domain, and therefore, sufficiently high com-
puting power. From this standpoint, oblique coordinates
assume restrictive conditions for node placement and math-
ematical simulations, which is not appropriate for general
applications.

3.3 Definition of regular tetrahedral lattice
coordinate system using basic lattice setting

If spheres of equal diameter are closely packed, and a
straight line is drawn from the origin set at the center of an
arbitrary sphere towards the center of an adjacent sphere,
this line connects centers of contacting spheres. With this
line defined as axis x of orthogonal coordinates, the other
axis y can be selected in the direction passing through the
center of a sphere in next nearest layer. Now consider a
broken line that connects the two spheres through which
axis y passes and the center of an adjacent sphere through
which axis y does not pass, as shown in Fig. 4. A contin-
uous broken line obtained by repeating this procedure is
the closest to axis y in the oblique coordinates. If a lattice
coordinate system different from the oblique coordinates
is set up with reference to this broken line, then the lat-
tice coordinates similar to orthogonal coordinates can be
defined, and variable domain needed for calculation can be
minimized.

In this study, a broken line obtained as explained
above is defined as a basic lattice. The axes x and �x are
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Fig. 4. Definition of six basic lattices on regular
tetrahedral lattice coordinate system. [Color figure can be

viewed at wileyonlinelibrary.com]

Fig. 5. Relationship between nodes and basic lattices in
first quadrant (3D-Visualization): (a) representation of
node array by CG, (b) correspondence between basic

lattices. [Color figure can be viewed at
wileyonlinelibrary.com]

straight lines but if they are exceptionally defined as basic
X-lattice, then the said lattice closest to axis y orthogonal
to basic X-lattice can be defined as basic Y-lattice. Further,
a broken line symmetric to basic Y-lattice with respect to
axis y can be defined as basic XY-lattice. Similarly, basic Z-
lattice and basic ZX-lattice are defined with respect to basic
X-lattice, and basic YZ-lattice is defined on the basic plane
YZ made by basic Y-lattice and basic Z-lattice.

Figure 5 shows an object’s shape with three nodes
arranged in the direction of each basic lattice defined above.
The diagram (a) pertains to 3D rendering by means of
computer graphics, while diagram (b) explains relationship
between the basic lattices X, Y, Z and XY, YZ, ZX. Here the
latticesXY, YZ, and ZX are those parallel to basicXY-lattice,
YZ-lattice, ZX-lattice and not passing the origin. Here colors
of the basic lattices correspond to those in Fig. 4.

In Fig. 5, nodes are shown by circles; colors of the
nodes are different depending on the lattice coordinates
in the direction of basic Y-lattice. In other words, nodes

Fig. 6. Lattice coordinates and direction of basic lattices.
[Color figure can be viewed at wileyonlinelibrary.com]

of same color lie on a plane ZX with same Y-lattice co-
ordinates. As shown in the diagram, due to the definition
of basic lattices, an area very close to that in orthogonal
coordinates can be used as the first quadrant.

In this study, the coordinate system in which basic
lattices and lattice coordinates are defined on coordinate
system of continuously arranged regular tetrahedrons is
called ‘‘regular tetrahedral lattice coordinate system’’ (be-
low referred to as ‘‘proposed coordinate system’’).

3.4 Setting of lattice coordinates in regular
tetrahedral lattice coordinate system

Lattice coordinates are defined to distinguish be-
tween lattice points made by the six basic lattices X, Y, Z,
XY, YZ, ZX defined as explained above and lattices parallel
to the basic lattices. In so doing, intersection of the basic
X-, Y-, and Z-lattices set so as to coincide with the origin
of the orthogonal coordinates is defined as the origin of
the proposed coordinates. Any intersection between lattices
is a lattice point; therefore, coordinates of every lattice
point are specified with reference to the channel length,
same as in the oblique coordinates. Therefore, the lattice
coordinates aremultiple of a basic length of respective basic
lattice with respect to the origin, that is, integers of 0 or
greater. In simulation of dynamic systems, node positions
may shift; here we denote a node’s initial position by N(X,
Y, Z) using lattice coordinates (X, Y, Z). Besides, we denote
variables in the proposed coordinates by uppercase symbols
to distinguish them from variables in general orthogonal
coordinates.

Relationship between overlap of planes parallel to
ZX-plane as seen along axis y and basic lattices is illus-
trated in Fig. 6. The diagram shows lattice coordinates of
some nodes and forward direction of lattices parallel to the
basic lattices. When seen from this direction, layers with
even Y-lattice coordinates (Even layer) and odd Y-lattice
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coordinates (Odd layer) are stacked alternately with an off-
set. In such arrangement, ZX-plane coincides with the plane
zx in orthogonal coordinates. At every Y-lattice coordinate,
planes parallel to ZX-plane are connected by the basic Y-
lattice, XY-lattice, and YZ-lattice (Connection). In so do-
ing, XY-plane and YZ-plane, though not being conventional
planes, are considered as reference planes in the proposed
lattice coordinate system.

3.5 Channel identification using lattice
coordinates

Channels that connect nodes lie on a lattice; thus, the
channels can be identified using names of a basic lattice
parallel to the lattice and lattice coordinates of one of the
connected nodes on the lattice origin side. Thus, a name
of the basic lattice is appended with hyphen to the channel
symbol Ch, followed by the lattice coordinates of the start
node. For example, Ch-X(X, Y, Z) denotes a channel that
connects nodes N(X, Y, Z) and (X+1, Y, Z) in parallel to the
basic X-lattice.

The lattice coordinates are arranged along the basic
X-, Y-, and Z-lattices so that only lattice coordinates X, Y, Z,
respectively, are simply added for parallel lattices. On the
other hand, assume that nodes connected on the basic XY-
plane advance so that Y-lattice coordinate increments by 1.
If the Y-lattice coordinate starts from an even node, then X-
lattice coordinate decrements by 1; on the other hand, if the
Y-lattice coordinate starts from an odd node, then X-lattice
coordinate increments by 1, as can be seen from Figs. 4 and
6. Similarly, in case that nodes connected on the basic ZX-
plane advance so that Z-lattice coordinate increments by 1,
if the Z-lattice coordinate starts from an even node, then X-
lattice coordinate decrements by 1; on the other hand, if the
Z-lattice coordinate starts from an odd node, then X-lattice
coordinate increments by 1. In case that nodes connected
on the basic YZ-plane advance so that Y-lattice coordinate
increments by 1, if the Y-lattice coordinate starts from an
even node, then Z-lattice coordinate decrements by 1. In
so doing, if the Z-lattice coordinate is even, then X-lattice
coordinate decrements by 1; on the other hand, if the Z-
lattice coordinate is odd, then X-lattice coordinate remains
unchanged. If the Y-lattice coordinate starts from an odd
node, then Z-lattice coordinate increments by 1. In so doing,
if the Z-lattice coordinate starts from an even node, then X-
lattice coordinate remains unchanged; on the other hand,
if the Z-lattice coordinate starts from an odd node, then X-
lattice coordinate increments by 1.

Thus, regarding a node N(X, Y, Z), the node’s lattice
coordinates depend on whether Y-lattice coordinates and
Z-lattice coordinates are even or odd. This relationship
is shown in Table 1. Here lattice coordinates of every
channel are (X, Y, Z) because the channels connect Node
1 (start node) and Node 2 in parallel to the basic lattices.

Table 1. Relationship between the lattice coordinates of
the nodes and the elements

Layer Code

Kind of element Y Z Node 1 Node 2

Ch-X X, Y, Z X +1, Y, Z
Ch-Y X, Y, Z X, Y +1, Z
Ch-Z X, Y, Z X, Y, Z +1
Ch-XY even X, Y, Z X −1, Y +1, Z

odd X, Y, Z X +1, Y +1, Z
Ch-ZX even X, Y, Z X −1, Y, Z +1

odd X, Y, Z X +1, Y, Z +1
Ch-YZ even even X, Y, Z X −1, Y +1, Z −1

even odd X, Y, Z X, Y +1, Z −1
odd even X, Y, Z X, Y +1, Z +1
odd odd X, Y, Z X +1, Y +1, Z +1

Irrespective of the values of Y- and Z-lattice coordinates,
channels parallel to the basic X-, Y-, and Z-lattices are
formed. On the other hand, with channels parallel to the
basic XY-, YZ-, and ZX-planes, lattice coordinates of Node
2 change depending on Y- and Z-coordinates, thus making
11 combinations with parallel basic lattices, six of which
are uniquely determined. In every lattice, channels exist
before and after N(X, Y, Z); therefore, a total number of 12
channels connect to N, as explained above.

4. Arbitrary Shape Setting for Virtual Objects in
Regular Tetrahedral Lattice System

4.1 Correspondence between lattice coordinates
and orthogonal coordinates

In many cases, real coordinates defined in orthogonal
coordinate system or oblique coordinate system do not co-
incide with lattice coordinates. Thus we explain about con-
version equations that establish correspondence between
lattice coordinates and orthogonal coordinates.

In the proposed coordinates, lattice points are placed
by the rules described above; therefore, real coordinates
(xreal, yreal, and zreal) in orthogonal coordinate system can
be expressed using lattice coordinates (X, Y, Z) and lattice
basic length l as shown below. In so doing, the origin of
the proposed coordinates coincides with that of orthogonal
coordinates. As regards ‘mod’ in the following expressions,
‘A mod B’ denotes the remainder of dividing A by B.

Thus, positions of lattice points in the lattice coordi-
nate system can be uniquely determined, and nodes can be
arranged according to an arbitrary object’s shape.

xreal =
[
X + {(Y + 1) mod 2 + (Z + 1) mod 2} ∕2

]
× l,

(2)
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Fig. 7. Arrangement of nodes according to shape of
objects’ cross-section.

yreal = Y ×
√
6∕3 × l, (3)

zreal =
[
Z ×

√
3∕2 + {(Y + 1) mod 2} ×

√
3∕6

]
× l.

(4)

4.2 Reproduction of object’s shape in regular
tetrahedral lattice coordinate system

Influence of object’s shape cannot be ignored in
mathematical simulations when objects affect each other
and environment, for example, when objects collide during
motion, or exchange heat with environment. With node-
based simulation methods, nodes can be placed arbitrarily
with regard to basic channel length, whichmakes it possible
to reproduce object’s shapes.

In the lattice coordinate system defined above, there
is a horizontal offset between ZX-plane and parallel planes
depending on the Y-lattice coordinate; however, unevenness
within the planes is small, and they can be handled as
a horizontal plane in orthogonal coordinates. As regards
objects of mathematical simulations, we assume a cross-
section in horizontal direction as shown in Fig. 7, and map
this shape onto the lattice coordinates. The nodes within the
mapped area make up the object of simulation. If nodes are
allocated at uniform intervals in each selected cross-section
of an object, then the object’s shape can be reproduced in
the lattice coordinates.

By the way, in the lattice coordinates, discretization is
performed using basic channel length and thus determined
height of regular tetrahedrons so that object’s shape can-
not be perfectly reproduced. However, with channel length
set sufficiently short, reproduction of fine shapes becomes

Fig. 8. Various shapes of objects constructed as set of
nodes. [Color figure can be viewed at

wileyonlinelibrary.com]

possible, and the said discretization does not impair math-
ematical simulations.

4.3 Various shapes constructed in regular
tetrahedral lattice coordinate system

Examples of arbitrary node allocation in the proposed
coordinate system are given in Fig. 8 [1, 2, 9, 10]. Partic-
ularly, the diagram (a) [1, 2, 9] pertains to a rectangular
parallelepiped with the same number of nodes placed along
basic X-, Y-, and Z-axes. In the diagram (b) [1, 2, 9], a
spherical region is specified by nodes allocated around an
arbitrary node. The diagram (c) [2] is a plate-like object
with the thickness along basic Z-lattice configured by two
layers. The diagram (d) [1, 2, 9] pertains to a tubular object
represented by a double cylinder around the basic X-lattice,
nodes being continuously connected on the inner side of ex-
ternal cylinder and outer side of internal cylinder. The dia-
gram (e) [9, 10] represents a skull shape with brain, eyeball,
muscle, skin, and other elements of the human head. This
model represents by applying the proposed method to an
MRI scans acquired at equal intervals. With conventional
MRI, slice intervals are set to 1 to 10 mm; in the diagram
(e), nodes are spaced at 6 mm. Figure 9 shows an example
of node placement in the brain area of a sagittal plane scan
obtained by MRI, and used to build the model in Fig. 8(e);
this node placement offers good agreement with the MRI
scan.

By the way, though most of biological objects have
a definite shape, small deformations of several millimeters
constantly occur; thus, one can think that the shapes can
be properly reproduced if node’s effective radius is 10 mm
or less. In addition, even if node spacing is set to 1 mm
for higher resolution and accurate shape reproduction, this
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Fig. 9. Example of node placement based on MRI image.

can be supported in the proposed coordinate system by
expanding coordinate domain.

Thus, arbitrary shapes can be sufficiently reproduced
with a node set using the proposed method.

5. Comparison with Node Allocation Methods Using
Orthogonal Coordinates

5.1 Nonequivalence of nodes in orthogonal
coordinates

With conventionally used orthogonal coordinates,
any two out of the three basic axes x, y, z are perpendicular
to each other; thus, space is divided equiangularly using
as few basic axes as possible. In so doing, the number of
dimensions is the same as the number of basic axes that
ensures intuitive coordinate assignment.

When lattice coordinates are set in orthogonal co-
ordinate system as is often the case with mathematical
simulations, interactions are calculated between a node 0 ⃝
and vertices of eight cubes that have a common vertex at
that node, as shown in Fig. 10. Lattices can be constructed
using the three coordinate axes x, y, z and their parallel
axes; in doing so, nodes that may interact with node 0 ⃝ are
divided into three groups depending on distance–-Group
1 ⃝ connected by cube sides, Group 2 ⃝ connected by face
diagonals, and Group 3 ⃝ connected by space diagonals.
The Groups 1 ⃝ , 2 ⃝ , and 3 ⃝ contain 6, 12, and 8 nodes,
respectively.

In this study, we assumed that all nodes are uniform
as explained in Section 2.1, and that interactions occur
when nodes’ effective ranges come into contact. Therefore,
in orthogonal coordinates, nodes of Groups 2 ⃝ and 3 ⃝ are
not in contact at a distance where nodes of Group 1 ⃝ are;

Fig. 10. Relation among nodes in orthogonal coordinate
system.

that is, based on the rule described in Eq. (1), these groups
do not interact. Thus, calculations are conducted with re-
gard to Group 1 ⃝ only, which results in less computation as
compared to the proposed coordinate system. In so doing,
influence of Groups 2 ⃝ and 3 ⃝ propagates to respective
contacting nodes with a delay of one or two time-steps.

However, when a tetrahedral structure is configured
of regular tetrahedrons and rectangular triangular pyra-
mids [6], interactions with nodes of Group 2 ⃝ are also
taken into account with regard to distance. In this case,
influence of Group 2 ⃝ has two stages–-direct influence at
moment t and indirect influence via Group 1 ⃝ at moment
t+1. As a result, the difference equation in Eq. (1) and
prerequisites are different; thus, computational complex-
ity increases when all lattice lengths are same in the pro-
posed coordinate system and nodes are placed with same
density. Besides, one has to consider possible arithmetic
errors due to time delays. Influence of nodes of Group 3 ⃝
was also mentioned [6], but in doing so, the prerequisite
of constructing cubes from tetrahedrons is ignored. More-
over, influence of Group 3 ⃝ is set in three stages including
indirect influence via Groups 2 ⃝ and 1 ⃝ at moments t+1
and t+2; as a result, the influence of time delays grows as
compared to the case when only Group 2 ⃝ is taken into
account.

In addition, tetrahedral structures are stable structures
according to Maxwell’s equation [11], while cubic struc-
tures have been proven to be unstable structures. Therefore,
considering shape variation in dynamic models, shape can
be maintained in tetrahedral structure with appropriate pa-
rameter setting, but cannot bemaintained in cubic structure.
Besides, in tetrahedral structure, shape is maintained using
minimum truss configuration, which means nonexistence
of multiple interaction channels and ensures regular arith-
metics.
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From these viewpoints, lattice coordinates set in or-
thogonal coordinate system are advantageous in that cor-
respondence among nodes is easily intuitive. On the other
hand, efficiency of mathematical simulations may be im-
paired in some cases because it is difficult to achieve shape
maintenance and unification of calculation.

5.2 Comparison of space utilization in terms of
node fill factor

Spherical nodes adjoin at a point of contact, and form
spaces enclosed by spheres. These spaces are not included
in any node so that calculations become impossible inside
them.

The proposed coordinate system is a close-packed
hexagonal lattice, and therefore, the node fill factor is about
74% [16]. On the other hand, the node fill factor is about
52% when nodes are placed at lattice points in orthogonal
coordinate system as shown in Fig. 9, and nodes do not exist
inside the lattice or on the lattice plane. That is, in the pro-
posed coordinate system, incomputable domain decreases
by about 55%.

If node radius is sufficiently small, then hardly any
difference occurs between adjacent nodes; considering that
shape errors occur in biological objects as mentioned
above, states inside the incomputable regions can be ap-
proximated by state of any neighbor nodes within the mar-
gin of arithmetic error.

Thus, when the proposed coordinate system is used
in biomathematical simulations, the most of analytic space
is computable.

5.3 Accuracy evaluation of mathematical
operations in each coordinate system

In order to estimate accuracy of calculated
results depending on the coordinate system, we
consider visualization of temperature distribution in
the brain [10, 14], and compare mathematical simulation
with experiments on human head models assuming that
brain temperature is controlled by selective hypothermic
treatment. That is, in the mathematical calculation,
Fourier’s law of heat conduction [16] is applied to the
mathematical model of human head shown in Fig. 11 to
calculate temperature distribution in the brain, and brain
temperature control assuming external input is performed.
Specifically, 403 ( = 64,000) nodes are arranged along each
of axes X, Y, Z, and the model is divided into six organs-–
Brain, Skin, Skull,Eyeball,Blood vessel, andCerebrospinal
fluid. Nodes not belonging to any of these are expressed
as Air. Heat capacity, heat transfer coefficient, initial
temperature, and metabolic heat production of each organ
and air are taken from the literature [10]. At the moment

Fig. 11. Classification of brain tissue model. [Color
figure can be viewed at wileyonlinelibrary.com]

when brain metabolism doubles from its initial value
and brain temperature reaches 39 °C, brain temperature
control using selective hypothermic treatment is applied
with the target temperature of 35 °C. As regards selective
hypothermic treatment, we applied a cooling model in
which simple cooling is switched over to temperature
management based on a control theory as proposed
by Honma and colleagues [14]; the control theory was
based on control laws combining adaptive gain control
and integral control [17]. In doing so, Ringer’s solution at
certain temperature is injected into a part of feeding vessels
toward the brain, and temperature-adjusted blood obtained
through mixing with blood of normal temperature injected
from the other vessels circulates in the brain so that heat is
exchanged inside the brain. In both simulation and model
experiments, temperature-adjusted Ringer’s solution is
injected in the right and left internal carotid artery, while
normal blood at 37 °C is injected in the right and left ver-
tebral artery. Temperature of Ringer’s solution is adjusted
in a tank through mixing cold and hot water. Flow rate of
cold and hot water pumps is set to catalog values of the
model experiment system. The tanks of cold and hot water
are provided with a cooler and a heater, respectively, to
maintain set temperatures during circulation. Performance
of the cooler and the heater is set to catalog values of the
model experiment system. In case that supply of cold and
hot water becomes short in course of experiment, Ringer’s
solution temperature is set within a feasible range. Besides,
in simulation, a compartment model ignoring temperature
distributions in cold and hot water tanks is employed; time
interval of one cycle is set to 1 s.

The simulation program is written in Microsoft Vi-
sual C++ 2010 Express, and run on an ordinary PC (Win-
dows 7, CPU: Core i5-3320M (2.60 GHz), 3.20 GB mem-
ory).
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Fig. 12. Comparison of two mathematical simulations
with different coordinate systems and model experiment

measurements. [Color figure can be viewed at
wileyonlinelibrary.com]

The mathematical model is calculated using both the
proposed coordinates and orthogonal coordinates. Aiming
at higher calculation accuracy, the mentioned Group 3 ⃝ is
also taken into account in the case of orthogonal coordinate
system. Only heat transfer coefficient [10] that depends
on distance between nodes is appropriately adjusted,
while all other calculation conditions are unchanged. In
the simulation, air temperature is approximated by a sine
wave of 25 ± 1 °C with a period of 1.5 h based on the
experimental values. The human head model is fabricated
with the shape same as the mathematical model, and the
same algorithm is used in the experiments for temperature
control. In both mathematical simulation and model
experiments, a dead band of 0.2 °C is set considering
effects of observation noise.

5.4 Comparison of calculation results and
mockup experiment results for each
coordinate system

The calculated and measured results are presented in
Fig. 12. In both simulation and experiments, temperature
control starts from the moment when the brain temperature
is at its target +0.3 °C, which corresponds to 0 on the
time scale. The time worth of 20,000s computation in the
simulations was about 384 s for the proposed coordinates
and about 495 s for orthogonal coordinates.

In the model experiments, temperature of cold water
rose in 3 h after the beginning, and temperature manage-

ment became impossible so that the brain is heated up,
which was reproduced in the simulation using the proposed
coordinate system. On the other hand, these simulated
results are lower by 0.2 °C at maximum as compared to the
model experiments at 0 to 1.5 h. This means that overshoot
produced by the past simple cooling is bigger than in the ex-
periments. The cooler has same performance in the simula-
tions and experiments, but the experimental cold water tank
exchanges heat with the atmosphere so that the temperature
slightly exceeds its set value (5 °C). On the other hand, a
compartment model is sued in the simulations to reproduce
dynamics of the cold water tank; in doing so, the heat
exchange with the atmosphere is not regarded, while the
cooler efficiency is assumed to be 100%, so that the temper-
ature decreases just to its set value. During simple cooling
in the temperature management, temperature of Ringer’s
solution is almost same as that of cold water, which can
explain that cooling effect in the simulations is higher than
in the model experiments. However, discrepancy with the
measured values is basically within ±0.5 °C, which can
be recognized as a good reproduction of the experimental
results. In contrast, in case of the orthogonal coordinates,
the error grows as big as 2°; moreover, the mentioned rise
of brain temperature is not reflected. That is, the orthogonal
coordinate system reproduces the experiments to some
extent, but this reproduction can be hardly called adequate.
Our results indicate that as compared to orthogonal
coordinates, the proposed coordinate system ensures more
realistic and accurate mathematical simulations.

5.5 Utility of simulations using regular
tetrahedral coordinate system

In the proposed coordinate system, regular tetrahe-
drons with stable structure are continuously allocated, and
basic lattices are formed by certain rules to achieve place
utilization of the same order as in orthogonal coordinates.
In doing so, real coordinates of all nodes placed at lat-
tice points are determined using lattice coordinates so that
arbitrary shapes can be easily constructed. The nodes at
lattice points are closely packed and basically equivalent
to orthogonal coordinates; channels that connect nodes lie
on respective lattices.

A node has 12 adjacent nodes, and as compared to
orthogonal coordinates, energy transfer is treated regularly
using a unified procedure. Also, node fill factor is higher
than in orthogonal coordinates; as a result, incomputable
domain is reduced, and computation accuracy remains or
improves. On the other hand, the basic Y- and Z-lattices
are broken lines that change their direction at every lattice
point; therefore, channels placed on the basic XY-, YZ,
and ZY-lattices and parallel lattices not coincident with
orthogonal coordinate axes cannot be sequentially identi-
fied through simple coordinate increment, as distinct from

51



a coordinate system with axes defined as straight lines.
However, certain regularity is confirmed from Y- and Z-
lattice coordinates of start points, which can be incorpo-
rated into a calculation program. Thus, simulations using
this coordinate system can be easily implemented.

However, when reproducing nonbiological fixed
shapes, some errors may occur in the proposed method
as compared to free mesh techniques where nodes are al-
located according to object’s shape without setting lattice
points in space [4, 5]. However, biological objects assumed
in the proposed method may change their shape by several
centimeters over time; therefore, one can expect sufficient
reproduction of object’s shape if distance between nodes is
set as necessary so that shape changes can be considered
within error range.

Comparison between the model experiments and
mathematical simulations suggests that the proposed co-
ordinate system agrees with measured values better than
orthogonal coordinate system. The number of channels cal-
culated at each node is 26 in orthogonal coordinates and 12
in the proposed coordinates, which results in lower com-
putational complexity and faster simulations. Calculation
time includes components common for each coordinate
system such as drawing time so that the total time does not
halves, but we showed that the computational complexity
is reduced more than two times, while calculation accuracy
is high. As mentioned above, in orthogonal coordinates,
response of temperature control slows down because of
time delays caused by three-stage propagation, which may
explain the bigger cooling effect observed from 0 through
1.5 h, and the deviation observed after 1.5 h. One can also
think of errors caused by the difference in node fill factor.

Apart from the results presented in Fig. 12, studies
using mathematical models with continuous arrangement
of regular tetrahedrons [1, 13, 14], same as in the present
study, showed relatively good agreement between simu-
lated and measured results for different algorithms of tem-
perature control. Together with the results of this study, it
confirms that the proposed method is sufficiently useful in
practice.

6. Conclusion

In this study, we proposed a regular tetrahedral lattice
coordinate system applicable to biomathematical simula-
tions using node models. This coordinate system combines
advantages of orthogonal coordinates (easy shape setting)
and oblique coordinates (stable structure), thus being suit-
able for mathematical simulations that reproduce object’s
shapes. In addition, the number of adjacent node is re-
duced to required minimum; as a result, computing time
to calculate interactions is reduced, while close-packed
and uniform node placement is advantageous for real-time
visualization of continuous distributions of state changes.

Furthermore, as compared to tetrahedrons placed on cubic
lattice, interactions are treated regularly, thus preventing
logical contradictions.

In the proposed method, nodes are arranged uni-
formly so that shape reproduction is not perfect; however,
considering temporal change of biological shapes, various
mathematical models can be supported as long as distance
between nodes is set sufficiently small. Besides, continuous
state distributions can be visualized because most of space
is defined as computable domain. The proposed method
was verified for dynamic models [1, 2, 9] and thermody-
namic models [10, 13, 14]; the method combines a number
of features advantageous for a wide variety of biomath-
ematical simulations. Moreover, this study may develop
into an efficient versatile method in a wide range including
calculation of density distributions due to mass transfer.
That is, the method is also useful as a basis for standard
evaluation procedures to confirm safety and effectivity of
revolutionary medical technologies in the framework of
Life Innovation.
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APPENDIX

A number of methods were proposed to arrange tetra-
hedrons in orthogonal coordinate system. Here we give a
graphic overview of previously proposed methods as well
as our comments.

A regular tetrahedron configured by connection of di-
agonals on cube faces shares four cube vertices as shown in
Fig. A1. By continuous arrangement of such tetrahedrons,
a tetrahedral lattice can be formed so that vertices of a cube
not shared with the inscribed tetrahedron are shared with
other tetrahedrons. Lattice points of such tetrahedral lattice
correspond to the nodes of Group 2 ⃝ mentioned above.
However, the tetrahedral lattice shown by dashed green line
in the diagram has no common vertices with lattice shown
by dashed brown line. That is, the cube side is shorter
than the tetrahedron side, and two tetrahedral lattices are

adjacent, but interactions do not propagate between nodes
belonging to the different lattices.

As a solution to this problem, a method was proposed
[6] to configure a cube by arranging rectangular triangular
pyramids on every face of a regular tetrahedron as shown
in Fig. A2. Here the pyramid sides not shared with the
regular tetrahedron coincide with the cube sides; therefore,

Fig. A1. Continuous arrangement of regular tetrahedrons
inscribed in cubic structure. [Color figure can be viewed at

wileyonlinelibrary.com]

Fig. A2. Cubic structure constructed from regular
tetrahedron and four right angle triangular pyramids.
[Color figure can be viewed at wileyonlinelibrary.com]

Fig. A3. Continuous arrangement of cubic structure that
includes four tetrahedrons and consists of three kinds of

diagonal lines. [Color figure can be viewed at
wileyonlinelibrary.com]
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lattice points obtained through continuous arrangement of
such cubes correspond to the nodes of Groups 1 ⃝ and 2 ⃝
mentioned above.

A method was also proposed [6] to consider inter-
actions between nodes placed at space diagonals of cubes.
In this case, regular tetrahedrons are not regarded, four
trigonal pyramids configured of cube’s sides, face diago-
nals, and space diagonals are arranged so as to consider
interactions between nodes placed at every vertex of the

cube. An example of such arrangement is shown in Fig. A3.
Lattice points obtained through continuous arrangement of
such cubes correspond to the nodes of Groups 1 ⃝ , 2 ⃝ , and
3 ⃝ mentioned above. Connections between all nodes can be
considered if such cubes are continuously arranged while
rotated.

Our analysis of shortages of the above methods re-
sulted in adoption of the representation proposed in this
study.
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